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Single scattering of light by a finite mirror symmetric collection of independently
scattering randomly oriented particles is considered as observed in the far-field. It is
shown that the slopes of the scattering function and all other elements of the scattering
matrix are functions of the scattering angle that tend to zero when the direction of the
scattered light tends to the strict forward or backward direction. This result is obtained by
introducing an extended scattering matrix, based on symmetry arguments. The theory is
illustrated and clarified by practical examples of scattering functions and scattering
matrices. Various applications are also considered.
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1. Introduction

In theoretical and experimental studies of light scattering
by particles a key role is played by the scattering matrix. This
4�4 matrix determines the four Stokes parameters of singly
scattered light traveling in a certain direction for a given
beam of polarized incident light [1–4]. The scattering matrix
depends in general on a polar angle, θ, in the closed range
½0; π�, and an azimuth angle, ϕ, in the closed range ½0;2π�,
where θ¼ 0 for strict forward scattering and θ¼ π for strict
backward scattering. In this paper we only consider single
scattering by finite mirror symmetric collections of randomly
oriented particles. The particles scatter light independently
and a detector is located in the far-field. Such collections are
frequently met in theoretical and numerical work on light
scattering. In practice they are often very suitable approx-
imations. Due to rotational symmetry of the collections there
All rights reserved.
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ier).
is no dependence on azimuth and the scattering matrix can
be written as FðθÞ.

The first element of FðθÞ is the scattering function FðθÞ.
This scalar function is the only element we need when
polarization is ignored. In general it has several interesting
features like maxima and minima [1–5]. The features near
strict forward and backward scattering are, however,
difficult to uncover by experimental means [6]. Further-
more, in results of numerical computations the behavior of
FðθÞ when θ tends to zero or π is often not clearly shown,
due to the use of an insufficient number of values for the
scattering angle (i.e. the mess is too coarse). This happens
in particular for the strong forward peak of the scattering
function produced by large particles. Similar problems
near strict forward and backward scattering occur for
some other elements of the scattering matrix.

In this paper we study the behavior of all elements of
the scattering matrix when the scattering angle tends to
zero or π. In Section 2 the form of the scattering matrix,
FðθÞ, is discussed and the extended scattering matrix, GðθÞ,
is introduced. It is shown that all elements of GðθÞ have a
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horizontal tangent if θ is zero or π. For this reason the
slopes of all elements of FðθÞ tend to zero when θ tends to
zero or π. This also holds for a number of combinations of
such elements, as proven in Section 3. The next section is
devoted to examples that clarify and corroborate the
theory expounded in the preceding sections. Various
applications of the main results of the theory are discussed
in Section 5. Appendix A is devoted to derivatives of
electric fields, Stokes parameters and elements of the
extended scattering matrix. In Appendix B some general
properties of polynomials are employed to show that all
generalized spherical functions have finite derivatives with
respect to x and θ, where x¼ cos ðθÞ.

2. Scattering in a plane

Suppose a finite collection of independently scattering
particles at the origin, O, of a Cartesian coordinate system is
illuminated by a beam of light and provides beams of singly
scattered light in all directions in three dimensional space. A
detector is located at a far-field observation point. Fig. 1 shows
the situation for a direction of the scattered light with polar
angle θ. We use Stokes parameters I, Q, U and V to describe the
intensity (or flux) and state of polarization of a beam of quasi-
monochromatic light and make these parameters elements of
a column vector, I ¼ ½I;Q ;U;V �t , called the Stokes vector,
where the superscript t stands for transpose [1,4]. Here I is
positive and not smaller than the absolute value of any of the
other Stokes parameters. The reference plane for the Stokes
parameters is the plane of scattering, i.e. the plane defined by
the directions of the incident and scattered light beams.
Fig. 1. Light scattering by a collection of particles at a point O in a
direction making an angle θ with the direction of the incident light.
We can now write

IsðθÞ ¼ cFðθÞIið0Þ; ð1Þ
where Iið0Þ and IsðθÞ are the Stokes vectors of the incident
and scattered light beams, respectively, c is a positive
constant that does not depend on θ and FðθÞ is the 4 by
4 scattering matrix. It is important to note that the angle θ
in Eq. (1) is restricted to the range 0rθrπ. For an
arbitrary collection of particles the Stokes vector of the
scattered light and the scattering matrix may not only
depend on θ, but also on an azimuthal angle, as far as
directions are concerned. However, this is not the case in
this paper, since we only consider mirror symmetric
collections of randomly oriented particles. Therefore, the
scattering matrix is of the form:

FðθÞ ¼

F11ðθÞ F12ðθÞ 0 0
F12ðθÞ F22ðθÞ 0 0

0 0 F33ðθÞ F34ðθÞ
0 0 �F34ðθÞ F44ðθÞ

0
BBBB@

1
CCCCA; ð2Þ

where FijðθÞ stands for the element in the i-th row and j-th
column of FðθÞ. Among the collections included are [1] the
following:
(i)
 randomly oriented particles with a plane of symmetry,
like spheres, bi-spheres, spheroids, cylinders, cubes, etc.,
(ii)
 randomly oriented particles with their mirror parti-
cles in equal numbers, like right-handed screws and
left-handed screws,
(iii)
 randomly oriented particles that are so small compared
to the wavelength that Rayleigh scattering is sufficiently
accurate, like molecules for visible incident light.
The positive element F11ðθÞ is the scattering function and
can also be written as FðθÞ. The absolute value of each other
element is smaller than or equal to F11ðθÞ. The relations
F21ðθÞ ¼ F12ðθÞ and F43ðθÞ ¼ �F34ðθÞ are due to reciprocity.
The fact that the eight elements of the 2�2 matrices in the
lower left and upper right corners are identically equal to
zero is due to mirror symmetry with respect to the scattering
plane. This was briefly mentioned by Hovenier in 1969 [7]
and treated more extensively in [4].

To study the behavior of the scattering matrix when θ
tends to zero or π we will now extend the range of θ by
measuring θ clockwise from the forward scattering direc-
tion in the range ½0;2π�, which is equivalent to measuring θ
anti-clockwise from the forward scattering direction in the
range ½0; �2π�. This is shown in Fig. 2 where we have
0rθrπ in S1, i.e. the right half-plane (as in Fig. 1) and
�πrθr0 in S2, i.e. the left half-plane. For strict forward
scattering θ¼ 0 and for strict backward scattering θ¼ 7π.
The directions given by θ and �θ of the scattered beam are
symmetric with respect to the strict forward as well as
strict backward scattering directions. We have thus com-
bined two half-planes into one complete plane. We can
now write instead of Eq. (1):

IsðθÞ ¼ cGðθÞIið0Þ; ð3Þ
where �πrθrπ. We use GijðθÞ to denote the element in
the i-th row and j-th column of GðθÞ. For a fixed beam of



Fig. 2. Light scattering by a collection of particles at a point O in two
directions lying in one plane which is composed of two half-planes, S1
and S2. The two directions of the scattered light are mirror symmetric
with respect to the directions given by θ¼ 0 and θ¼ π or �π.
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incident light the rotational symmetry of the collection of
particles entails

IsðθÞ ¼ Isð�θÞ ð4Þ
which gives, according to Eq. (3),

Gð�θÞ ¼ GðθÞ: ð5Þ
To determine GðθÞ from FðθÞ we can use that they are equal
for 0rθrπ, while Eq. (5) can be employed for �πrθr0.
We call FðθÞ the scattering matrix and GðθÞ the extended
scattering matrix. Their one–one elements are called the
scattering function and the extended scattering function.
It is clear from Eqs. (4) and (5) that the elements of IsðθÞ and
GðθÞ are even functions of θ. Certain properties of electro-
magnetic fields make it possible to show that all elements
of IsðθÞ and GðθÞ are continuous functions with continuous
derivatives (see Appendix A). So in particular the first
derivative of these functions exists and is continuous.

Let us now discuss some general properties of (single-
valued) even functions of a single real variable. Clearly, the
curve representing an even function yðθÞ in a Cartesian
coordinate system is mirror symmetric about the vertical
axis, which means that the curve remains unchanged after
mirroring about the vertical axis. Furthermore, we have
the following theorems:
1.
 The sum of two even functions is even.

2.
 The product of two even functions is even.

3.
 The ratio of two even functions is even, if the denomi-

nator is not identically zero.

4.
 The composition of a function with an even function

is even.

5.
Fig. 3. Example of an element GijðθÞ. This function is mirror symmetric
about the vertical through θ¼ 0, but the slopes at points that are mirror
symmetric have opposite signs since the tangents at such points are also
mirror symmetric with respect to the vertical through θ¼ 0. Similar
situations exist for θ¼ 7π. Furthermore, GijðθÞ is a periodic function with
period 2π. Clearly, these properties are independent of the normalization
of GijðθÞ.
The first derivative of an even function is an odd
function, if this derivative exists.

The first four theorems follow directly from the defini-
tion of an even function. The fifth theorem is readily found
from the definition of the first derivative of a function,
since the mirror image with respect to the vertical axis of a
small change Δy equals Δy, but the mirror image of the
corresponding Δθ is �Δθ.

Hence, any even function of θ times an element of GðθÞ
is even and the natural (base e), as well as the Briggsian
(base 10), logarithm of an element of GðθÞ is even. These
corollaries are important for making plots. The fifth
theorem means that if G′ðθÞ is the first derivative of GðθÞ,
we have

G′ðθÞ ¼ �G′ð�θÞ: ð6Þ
By letting θ tend to zero in this equation we find

G′ð0Þ ¼ �G′ð0Þ; ð7Þ
yielding

G′ð0Þ ¼O; ð8Þ
where O stands for a matrix having only zero elements.
The directions of the scattered beams given by θ and �θ
coincide in this case and form the strict forward scattering
direction. Consequently, in a Cartesian coordinate system
each element of GðθÞ has a horizontal tangent (i.e. parallel
to the θ-axis) at θ¼ 0. Or in other words, the slope of the
tangent is zero for θ¼ 0, which means there is a maximum
or minimum there, unless the function is constant in a
range with θ¼ 0 as an interior point. This is illustrated by
means of an example in the range ½�π; π� of Fig. 3. We see
that the tangents of the function in a point and its mirror
point have opposite slopes. If we move both points to θ¼ 0
the tangents tend to a horizontal tangent at θ¼ 0. This
provides a geometrical explanation of Eq. (8). It should be
noted that an element of GðθÞ cannot have a point of
inflection at θ¼ 0 with a horizontal tangent, since in that
case the element would not be symmetric about the
vertical axis.

To explore the situation near the back scattering direc-
tion we will now extend the range of theta even further.
The directions given by θ¼ π and θ¼ �π coincide and
form the strict backward scattering direction (see Fig. 2).
Note that, e.g., θ¼ πþπ=6 is the same direction as
θ¼ �πþπ=6. More generally, the directions represented
by θ¼ π and θ¼ π72π are the same. Therefore, all ele-
ments of GðθÞ are periodic functions with period 2π.
Because of the symmetry with respect to the backward
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scattering direction GðθÞ is symmetric with respect to θ¼ π
and θ¼ �π (see Fig. 3). Letting θ tend to π in Eq. (6) yields

G′ðπÞ ¼ �G′ð�πÞ: ð9Þ
But G′ðθÞ is periodic with period 2π, since GðθÞ has this
periodicity. So we have

G′ð�πÞ ¼ G′ðπÞ: ð10Þ
It follows from Eqs. (9) and (10) that

G′ðπÞ ¼O: ð11Þ
Because of symmetry with respect to the vertical through π
this point cannot be a point of inflection with a horizontal
tangent. So all elements of GðθÞ have a horizontal tangent,
not only at θ¼ 0, but also at θ¼ π, which means there is a
maximum or minimum at these points, unless the function
is constant in a range containing such a point as an interior
point. In Fig. 3 we see the situation around the strict
backward scattering direction. It is clear that the tangents
at two points that are symmetric with respect to π have
opposite slopes and coincide when both points are moved
to θ¼ π. This explains Eq. (11).

In case the scattering matrix is of the form given by Eq.
(2) it is customary in the literature to restrict the treat-
ment of a scattering problem in the scattering plane to a
half-plane in which θ runs from zero (strict forward
scattering) to π (strict backward scattering), with both
end points included (see Eqs. (1) and (2)). Eq. (8) shows
that at θ¼ 0 the left-hand and right-hand derivatives of
GijðθÞ are equal and both are zero. Since at θ¼ 0 the right-
hand derivative of GijðθÞ is the same as the right-hand
derivative of FijðθÞ we can conclude that the right-hand
derivative of FijðθÞ is zero at θ¼ 0. Similarly, Eq. (11) shows
that the left-hand derivative of FijðθÞ is zero for θ¼ π. We
have thus shown that the slope of (the graph of) FijðθÞ
tends to zero when θ tends to zero or π, or in other words,
the tangents tend to become parallel to the θ-axis if θ tends
to zero or π. This result has been obtained by considering
scattering in the complete scattering plane, instead of only
in a half-plane. So, the behavior of FðθÞ near the borders,
i.e. near θ¼ 0 and θ¼ π, can be better understood by
looking across the borders. Evidently, this is independent
of the normalization of the scattering matrix. It should be
mentioned [3,4] that for θ¼ 0 we have F22 ¼ F33 and
F12 ¼ F34 ¼ 0, while for θ¼ π we have F22 ¼ �F33, F12 ¼
F34 ¼ 0 and F44 ¼ F11�2F22.

3. Combinations

Combinations of elements of the scattering matrix
frequently occur in the literature. To deal with them we
can use the general rules that the sum, difference, product
and ratio of differentiable functions are differentiable,
provided no vanishing denominator occurs. For the same
kind of combinations the same rules hold for the con-
tinuity of continuous functions and the periodicity of
periodic functions having the same period. In addition
we can employ the rules for combinations of even and odd
functions given earlier. In graphs and tables one often
considers ratios of the elements of the scattering matrix
like F11ðθÞ=F11ðθcÞ, where θc is a fixed angle, and other
elements divided by F11ðθÞ, which is larger than zero. Because
of our results for GðθÞ and the rules given above it is clear that
the right-hand derivatives at θ¼ 0 and the left-hand deriva-
tives at θ¼ π are zero for such combinations. If the Briggsian
logarithm (indicated as log) of an even positive function f ðθÞ
with continuous derivative is plotted in the range �πrθrπ
one finds for the derivative log eð1=f ðθÞÞðdf ðθÞ=dθÞ, which is
also zero at 0 and π. So in all these plots the slopes tend to
zero when θ tends to zero or π.

According to Eq. (3) all four elements of the Stokes
vector of the scattered light IsðθÞ are, for a fixed beam of
incident light, a sum of a constant times an element of
GðθÞ. So the derivatives of all elements of IsðθÞ are con-
tinuous and vanish at θ¼ 0 and θ¼ π. If we only consider
0rθrπ we find zero slopes for all elements of IsðθÞ in the
limits of θ tending to zero or π.

Combinations of Stokes parameters are also frequently
used like
(a)
 the relative intensity:

Ir θð Þ ¼ IðθÞ
IðθcÞ

; ð12Þ

where θc is a fixed angle, e.g., 301,

(b)
 the degree of linear polarization (in case U vanishes):

ps θð Þ ¼ �Q ðθÞ
IðθÞ ; ð13Þ
(c)
 the degree of circular polarization:

pc θð Þ ¼ VðθÞ
IðθÞ : ð14Þ
For the same reasons as given above for the elements of
the scattering matrix, the slopes of the curves in these
three combinations must also tend to zero when θ
approaches zero or π.

4. Examples

As a first example we consider the case of Rayleigh
scattering for particles with isotropic polarizability, as the
limiting case for very small particles [1]. To determine GðθÞ
from FðθÞ we use that they are equal for 0rθrπ, while
Eq. (5) can be employed for �πrθr0. This gives

G11 θð Þ ¼ 3
4 1þ cos 2θ
� �

: ð15Þ

So the expression at the right-hand side of this equation is
the same as for F11ðθÞ in the range 0rθrπ, but is valid for
G11ðθÞ in the range �πrθrπ. It is also periodic with
period 2π. The derivative of G11ðθÞ is the odd function:

G′
11 θð Þ ¼ �3

4 sin 2θð Þ; ð16Þ

which is continuous and vanishes at θ¼ 0 and θ¼ π. In the
same way FðθÞ provides the other non-zero elements of
GðθÞ, namely G22ðθÞ ¼ G11ðθÞ, G12 θð Þ ¼ �3

4 sin 2 θð Þ and G33

θð Þ ¼ G44 θð Þ ¼ 3
2 cos θ. These are all even functions, with

continuous derivatives which are zero at θ¼ 0 and θ¼ π.
Consequently, all elements of the scattering matrix for this
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case, as functions of the scattering angle, tend to have zero
slopes when θ approaches zero or π. This concludes our
first example.

A very useful general example is provided by a scatter-
ing matrix of the form given by Eq. (2) with elements that
can be written as the sum of Nþ1 generalized spherical
functions Pl

mnðxÞ with x¼ cos θ [4]. Using the equality of
GðθÞ and FðθÞ for 0rθrπ as well as Eq. (5) we can now
write the elements of GðθÞ as follows:

G11ðθÞ ¼ ∑
N

k ¼ 0
αk1P

k
00ðxÞ ¼ ∑

N

k ¼ 0
αk1PkðxÞ ð17Þ

G22 θð Þ ¼ 1
2

∑
N

k ¼ 2
αk2 Pk

22 xð ÞþPk
2�2 xð Þ

n o
þαk3 Pk

22 xð Þ�Pk
2�2 xð Þ

n o
ð18Þ

G33 θð Þ ¼ 1
2

∑
N

k ¼ 2
αk2 Pk

22 xð Þ�Pk
2�2 xð Þ

n o
þαk3 Pk

22 xð ÞþPk
2�2 xð Þ

� on
ð19Þ

G44ðθÞ ¼ ∑
N

k ¼ 0
αk4P

k
00ðxÞ ¼ ∑

N

k ¼ 0
αk4PkðxÞ ð20Þ

G12 θð Þ ¼ ∑
N

k ¼ 2
βk1P

k
02 xð Þ ¼ � ∑

N

k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�2Þ!
ðkþ2Þ!

s
βk1P

2
k xð Þ ð21Þ

G34 θð Þ ¼ ∑
N

k ¼ 2
βk2P

k
02 xð Þ ¼ � ∑

N

k ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk�2Þ!
ðkþ2Þ!

s
βk2P

2
k xð Þ: ð22Þ

In these equations PkðxÞ ¼ Pk
00ðxÞ are Legendre polyno-

mials. The functions P2
k ðxÞ are associated Legendre functions.

It is shown in Appendix B that the functions P2
k ðxÞ, Pk

22ðxÞ and
Pk
2�2ðxÞ are polynomials of x if kZ2, and consequently have

finite continuous derivatives with respect to x. Clearly all
elements of GðθÞ are even functions of θ. Using the chain rule
of differential calculus and the fact that the derivative of
cos θ is � sin θ we find that all six matrix elements
occurring in Eqs. (17)–(22) have finite continuous deriva-
tives with respect to θ, which vanish for θ¼ 0 and θ¼ π.
Consequently, all elements of the scattering matrix for this
case, as functions of the scattering angle, tend to have zero
slopes when θ approaches zero or π. In many studies of light
scattering polarization is ignored and the scattering function
is written as a sum of Legendre polynomials. Eqs. (18)–(22)
can then be ignored and it follows from Eq. (17) that the
slopes of the scattering function as a function of θ tend to
zero when θ tends to zero or π.
5. Applications

In the preceding sections we have shown that in certain
cases the slopes of the elements of the scattering matrix,
as functions of θ, tend to zero when the scattering angle
tends to zero or π. Some applications of this result will be
discussed in this section. They pertain to single scattering
by finite mirror symmetric collections of independently
scattering particles in random orientation, as observed in
the far-field. We mention the following:
(i)
 Numerical computations of scattering matrices using
Mie theory, the T-matrix method, DDA, and other
methods [8–13] should always be checked. This is
especially important for the strong forward scattering
peak of the scattering function (and of some other
elements of the scattering matrix) exhibited by rela-
tively large particles. Furthermore, the scattered light
near θ¼ π is often much weaker than at smaller
scattering angles, which is a disadvantage for the
accuracy of Monte Carlo calculations. In both cases it
may help to know that the derivatives of the functions
must tend to zero when θ approaches 0 or π.
(ii)
 A large variety of approximate scattering functions (and
some other elements of the scattering matrix) exist in
the form of formulae with several constants [4,14]
and references therein. It is of course desirable that
the derivatives of such functions with respect to θ
tend to zero on approaching strict forward and backward
scattering. This is in order for the very popular Henyey–
Greenstein function. In this case we have (see Eq. (5))

G11 θð Þ ¼ 1�g2

ð1þg2�2 g cos θÞ3=2
; ð23Þ

where the asymmetry parameter g is a constant in the
range ð�1;1Þ. Differentiation gives

G′
11 θð Þ ¼ 3 gðg2�1Þ sin θ

ð1þg2�2 g cos θÞ5=2
; ð24Þ

which is zero at θ¼ 0 and θ¼ π. So the derivatives of a
Henyey–Greenstein scattering function in the range
0rθrπ tend to zero on approaching strict forward
and backward scattering and, evidently, the same is true
for a sum of Henyey–Greenstein scattering functions.
However when, for example [14], a function is defined as

hðθÞ ¼ t expð�sθÞ; ð25Þ
where t and s are non-zero constants, and this would be
chosen as an approximate scattering function we would
have for the derivative in the range 0oθoπ

h′ðθÞ ¼ �ts expð�sθÞ; ð26Þ
which does not tend to zero when θ tends to zero or π.
So this approximate scattering function does not have
the proper behavior near strict forward and backward
scattering.
(iii)
 For particles large compared to the wavelength a
strong forward peak occurs in the scattering function
and some other elements of the scattering matrix. If θ
tends to zero the slope of the scattering function may
then rather abruptly tend to zero in a small region
near θ¼ 0. It should be realized that in such cases
significant inaccuracies may occur in numerical cal-
culations, unless a very fine mesh of values of θ is used
near the strict forward scattering direction.
(iv)
 Experimental determinations of elements of the scatter-
ing matrix as functions of the scattering angle are usually
restricted to a range with a lower bound of 31–51 and an
upper bound of about 1751. Therefore, extrapolations are
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needed to obtain data for the entire range 0rθrπ. This
is important for studies of single light scattering and
indispensable for investigations involving multiple light
scattering when these are based on an experimental
scattering matrix. Several methods for such extrapola-
tions have been reported [15–18]. We can now make use
of the fact that for each element of the scattering matrix
the right-hand derivative at θ¼ 0 and the left-hand
derivative at θ¼ π must both vanish. This can be illu-
strated as follows. Let f ðθÞ be an element of the scattering
matrix FðθÞ with 0rθrπ. Suppose f 1 ¼ f ðθ1Þ and
f 2 ¼ f ðθ2Þ are known, with θ2 larger than θ1, while both
angles are somewhat larger than zero. To make inter-
polations and extrapolations in the range 0rθrθ2 we
can use, e.g., the quadratic polynomial:

f ðθÞ ¼ a0þa2θ2: ð27Þ
The linear term in this equation is absent because the
right-hand derivative of f ðθÞ must be zero if θ¼ 0. We
can now determine the coefficients a0 and a2 from f1 and
f2 in the usual way, i.e. by solving two linear equations
with two unknowns. The result is

a0 ¼ f 1�
ðf 1� f 2Þθ21
θ21�θ22

ð28Þ

and

a2 ¼
f 1� f 2
θ21�θ22

: ð29Þ

In this way we find approximate values for f ðθÞ in the
whole range 0rθrθ2 and in particular f ð0Þ ¼ a0, from
only two experimental values. It should be noted that we
made no assumptions about the size, shape, structure
and composition of the particles.
In experimental determinations of scattering matrices
one often measures [6] F11ðθÞ=F11ðθcÞ, F22ðθÞ=F11ðθÞ,
F33ðθÞ=F11ðθÞ, F44ðθÞ=F11ðθÞ, �F12ðθÞ=F11ðθÞ and F34ðθÞ
=F11ðθÞ in the range 0oθminrθrθmaxoπ, where θc is a
fixed angle, e.g., 301 and F11ðθÞ is larger than zero. As
mentioned in Section 3 these ratios also have vanishing
right-hand derivatives at θ¼ 0 and vanishing left-hand
derivatives at θ¼ π. This can be used for interpolation
and extrapolation to θ¼ 0 and θ¼ π.
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Appendix A

In this appendix we consider derivatives of, consecu-
tively, electric fields, Stokes parameters and elements of
the extended scattering matrix. It is generally assumed,
either explicitly [19] or implicitly, that electromagnetic
field vectors are finite throughout the entire field and are
continuous functions of position and time with continuous
derivatives of all orders at every point in whose neighbor-
hood the physical properties of the medium are contin-
uous. In this paper we can go further than this general
assumption because we deal with single scattering by a
finite scattering object with a far-field observation point.
This makes it possible to use an expression for the
scattered electric field [20] that shows this field behaves
as a single outgoing wave. Recently, Dr. M.I. Mishchenko
informed us that this expression can be differentiated with
respect to the position of the observation point, as many
times as desired. It should be noted that if the derivative of
order n of a function exists, the derivative of order n�1 is
continuous, so that e.g the first order derivative is a
continuous derivative if the second order derivative exists.

Using polar coordinates r, θ and ϕ for the points in the
space outside the collection of particles it is clear now that
the components of the electric field that are combined to
define the Stokes parameters of the scattered beam of light
considered in Section 2 are continuous functions of θ with
continuous derivatives. It follows that the same is true for
the Stokes parameters of this beam [2].

If we now choose the Stokes vectors ð1;0;0;0Þ,
ð1;1=2;1=2;0Þ and ð1;0;0;1=2Þ, in that order, for the
incident beam we obtain from Eq. (3), respectively, the
Stokes vectors cðG11;G12;0;0Þ, cðG11þG12=2;G12þG22=2;
G33=2; �G34=2Þ and cðG11;G12;G34=2;G44=2Þ for the scat-
tered beam. It is then readily seen by using the rules for
sums and differences of continuous and differentiable
functions that all elements of GðθÞ are continuous func-
tions of θ with continuous derivatives.

Appendix B

In this appendix we use some properties of polynomials
to show that all functions of x occurring in Eqs. (17)–(22)
have continuous finite derivatives with respect to x. A real-
valued polynomial function of a real variable x can be
written as

jðxÞ ¼ e0þe1xþe2x2þ…þenxn; ðB:1Þ
where n is a non-negative integer and e0; e1; e2;…; en are
real constant coefficients. The expression on the right-hand
side of Eq. (B.1) is called a polynomial. A single constant,
including zero, is also a polynomial. We mention the
following properties of polynomials. The sum, difference
and product of two polynomials is also a polynomial. Any
derivative with respect to x of a polynomial function is finite
as well as continuous and is also a polynomial function.

Legendre polynomials occur in Eqs. (17) and (20). So the
right-hand sides of these equations have finite continuous
derivatives with respect to x.

Associated Legendre functions are present in Eqs. (21)
and (22). It is well-known that not all associated Legendre
functions are polynomials. However, we have [21]

P2
k xð Þ ¼ 1�x2

� �d2PkðxÞ
dx2

; ðB:2Þ

and this product of polynomials is a polynomial for every
value of k. Therefore, the right-hand sides of Eqs. (21) and
(22) have finite continuous derivatives with respect to x.
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Eqs. (18) and (19) contain the more complicated functions
Pk
22ðxÞ and Pk

2�2ðxÞ. To show that these functions are also
polynomial functions we use the recurrence relation [4]

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1Þ2�n2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ1Þ2�m2

q
Pkþ1
mn ðxÞ

þðkþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�n2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�m2

q
Pk�1
mn ðxÞ

¼ ð2kþ1Þfkðkþ1Þx�mngPk
mnðxÞ; ðB:3Þ

starting with

P2
22 xð Þ ¼ 1

4 1þ2xþx2
� � ðB:4Þ

and

P3
22 xð Þ ¼ 1

4 �2�xþ4x2þ3x3
� �

: ðB:5Þ
Eqs. (B.4) and (B.5) follow directly from the definition of
generalized spherical functions [4]. Using the recurrence
relation (B.3) and the polynomial functions given by
Eqs. (B.4) and (B.5) we readily find that Pk

22ðxÞ is a poly-
nomial function for every value of kZ2. Similarly, we find
that Pk

2�2ðxÞ is a polynomial function for every value of
kZ2. Hence, the right-hand sides of Eqs. (18) and (19)
have finite continuous derivatives with respect to x. This
concludes our proof that all functions of x occurring in
Eqs. (17)–(22) have finite continuous derivatives with
respect to x.

References

[1] Van de Hulst HC. Light scattering by small particles. New York:
Wiley; 1957.

[2] Bohren CF, Huffman DR. Absorption and scattering of light by small
particles. New York: Wiley; 1983.

[3] Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption, and
emission of light by small particles. Cambridge: Cambridge Uni-
versity Press; 2002.

[4] Hovenier JW, van der Mee CVM, Domke H. Transfer of polarized
light in planetary atmospheres. Dordrecht: Kluwer, Springer; 2004.

[5] Mishchenko MI, Hovenier JW, Travis LD, editors. Light scattering by
nonspherical particles. San Diego: Academic Press; 2000.
[6] Muñoz O, Hovenier JW. Laboratory measurements of single light
scattering by ensembles of randomly oriented small irregular
particles in air. A review. J Quant Spectrosc Radiat Transfer 2011;112:
1646–57.

[7] Hovenier JW. Symmetry relationships for scattering of polarized
light in a slab of randomly oriented particles. J Atmos Sci 1969;26(3):
488–99.

[8] Mishchenko MI, Hovenier JW, Wiscombe WJ, Travis LD. Overview of
scattering by non spherical particles. In: Mishchenko MI, Hovenier
JW, Travis LD, editors. Light scattering by nonspherical particles:
theory, measurements and applications. San Diego: Academic Press;
2000. p. 29–60.

[9] Yurkin MA, Hoekstra AG. The discrete dipole approximation: an
overview and recent developments. J Quant Spectrosc Radiat Trans-
fer 2007;106:558–89.

[10] Mishchenko MI, Videen G, Khlebtsov NG, Wriedt T. Comprehensive
T-matrix reference database: a 2012–2013 update. J Quant Spectrosc
Radiat Transfer 2013;123:145–52.

[11] Kahnert M. Numerical methods in electromagnetic scattering the-
ory. J Quant Spectrosc Radiat Transfer 2013;79–80:775–824.

[12] Kahnert M. Electromagnetic scattering by non spherical particles:
recent advances. J Quant Spectrosc Radiat Transfer 2010;111:
1788–90.

[13] Wriedt T. Light scattering theory and programs: discussion of latest
advances and open problems. J Quant Spectrosc Radiat Transfer
2012;113:2465–9.

[14] Van de Hulst HC. Multiple light scattering. Tables, formulas and
applications. San Diego: Academic Press; 1980.

[15] Liu L, Mishchenko MI, Hovenier JW, Volten H, Muñoz O. Scattering
matrix of quartz aerosols: comparison and synthesis of laboratory
and Lorenz–Mie results. J Quant Spectrosc Radiat Transfer 2003;79/
80:911–20.

[16] Muñoz O, Volten H, Hovenier JW, Nousiainen T, Muinonen K,
Guirado D, et al. Scattering matrix of large Saharan dust particles.
J Geophys Res 2007;112:D13215.

[17] Kahnert M, Nousiainen T. Variational data analysis method for
combining laboratory-measured light scattering phase functions
and forward-scattering computations. J Quant Spectrosc Radiat
Transfer 2007;103:27–42.

[18] Laan EC, Volten H, Stam DM, Muñoz O, Hovenier JW, Roush TL.
Scattering matrices and expansion coefficients of Martian palagonite
particles. Icarus 2009;1999:219–30.

[19] Stratton JA. Electromagnetic theory. New York: McGraw-Hill; 1941.
[20] Mishchenko MI, Travis LD, Lacis AA. Multiple scattering of light by

particles. Radiative transfer and coherent backscattering. Cam-
bridge: Cambridge University Press; 2006.

[21] Jahnke E, Emde F. Tables of functions. New York: Dover Publications;
1945.


